CNNs

DisplaceNet: Recognising Displaced People from Images by Exploiting Dominance Level

DisplaceNet is a novel model which infers potential displaced people from images by integrating the control level of the situation and CNN classifier into one framework for image classification.

Traffic Sign Recognition based on Synthesised Training Data

To deal with the richness in visual appearance variation found in real-world data, we propose to synthesise training data capturing these differences for traffic sign recognition

Exploring object-centric and scene-centric CNN features and their complementarity for human rights violations recognition in images

We introduce the human rights archive (HRA) database, a verified-by-experts repository of 3050 human rights violations photographs, labeled with human rights semantic categories, comprising a list of the types of human rights abuses encountered at present. With the HRA dataset and a two-phase transfer learning scheme, we fine-tuned the state-of-the-art deep convolutional neural networks (CNNs) to provide human rights violations classification CNNs.

MAT-CNN-SOPC: Motionless Analysis of Traffic Using Convolutional Neural Networks on System-On-a-Programmable-Chip

This work tackles real-life traffic load recognition problem on System-On-a-Programmable-Chip (SOPC) platform and coin it as MAT-CNN-SOPC, which uses an intelligent retraining mechanism of the CNN with known environments

Material Classification in the Wild: Do Synthesized Training Data Generalise Better than Real-world Training Data?

We demonstrate that synthesized data achieve an improvement on mean average precision when used as training data and in conjunction with pre-trained CNN architectures

Detection of Human Rights Violations in Images: Can Convolutional Neural Networks Help?

We conduct a rigorous evaluation on a common ground by combining the HRUN dataset with different state-of-the-art deep convolutional architectures in order to achieve recognition of human rights violations.

Evaluating Deep Convolutional Neural Networks for Material Classification

We conduct a rigorous evaluation of how state-of-the art CNN architectures compare on a common ground over widely used material databases.

Road Traffic Analysis

Road Traffic Analysis is an important process in road traffic management.

Visual Recognition of Human Rights Violations

Automation of human rights violation recognition in images.

Material Recognition

Recognizing visual material attributes in images.